Consortium for Advanced Radiation Sources
The University of Chicago
Sector 14, APS

- National user facility for synchrotron-based structural biology
- Supported by NCRR-NIH since its founding in 1992
- Additional recent funding: State of Illinois; APS (BSL-2/3 upgrade); ANSTO, Philip Anfinrud NIDDK/NIH (enhancement of time-resolved capabilities)
- All BioCARS users have been, and remain, general users
- Two experimental stations presently used (14-ID-B and 14-BM-C) for macromolecular crystallography and (recently) fiber diffraction
Focused Pink or Monochromatic (Tunable) ID Station
(white beam compatible)

Two In-line Undulators: U23 & U27
KB mirror pair
Kohzu Si (111) monochromator

Time-resolved and Laue crystallography
Protein and Virus Crystallography
Micro-crystallography

BSL-2/3 Sample Preparation Room
with Biosafety Cabinet

Facility Main Entrance

Laser Lab

Control Room

Cold Room

Computer Room

Fiber Diffraction

Protein and Virus Crystallography

Bent conical Si-mirror (Rh coated)
Horizontally deflecting Ge (111) monochromator

ID FOE

ID SOE

BM FOE

BM SOE
BioCARS Primary Focus: Present and Future

- time-resolved and Laue macromolecular crystallography (unique at the APS; one of 3 in the world: ESRF ID09, PF-AR NW14)
- biohazards at the BSL-2 & 3 level (unique in the US; one of 2 in the world: Diamond I03)
- Laue and monochromatic micro-crystallography (5-10 μm samples)
- non-standard/customized experiments (e.g. on-line micro-spectrophotometer, topography of protein crystals, fiber diffraction in collaboration with BioCAT)
- standard macromolecular crystallography techniques also supported: SAD/MAD, ultra-high resolution, large unit cells
Science at BioCARS: Time-resolved Crystallography
Capturing Macromolecules in Action

Probe fast structural changes at ambient temperature

- rapid reaction initiation (pump: short laser pulses, 100fs-10ns)
- rapid data collection (probe: short X-ray pulses, 100ps, or longer pulse trains)
 - stationary crystals / Laue diffraction technique
 - fast X-ray shutter train to isolate a 100ps pulse
 - $>10^9$-10^{10} photons/100ps X-ray pulse
 - focused pink beam, 1-3% bw
Two ns laser systems:

- Nd:YAG pumped dye laser (Continuum):
 - 7ns pulse duration; 10Hz
 - visible (400-650nm)
 - high pulse energy

- OPO laser (Opotek):
 - 4ns pulse duration; 10Hz
 - visible and UV (240-640nm)
 - easy tunability

New ps laser just installed!

Two micro-spectrophotometers for on-line and off-line crystal absorption measurements.
BioCARS Time-resolved Crystallography Users

- User TR operation since Sept 2000
- Laue/TR beamtime:
 - hybrid mode but also 24-bunch mode
 - 2-3 weeks per APS run
 - 1–5 days per user group

- Time-resolved Crystallography Workshop
 March 10-13, 2001, APS
 86 participants, 27 talks
- Laue Data Processing Workshop
 October 9-11, 2002, BioCARS
- Time-resolved Crystallography Workshop
 May 6-8, 2006, APS
 70 participants, 25 talks
Photoactive Yellow Protein: advanced TR experiment and complete TR data analysis

- Blue light photoreceptor from the purple eubacterium *Ectothiorhodospira halophila*
- Involved in negative phototactic response of *E. halophila* to blue light
- PYP exhibits a photocycle: several intermediates spanning time-scales from <ps to seconds

Coumaric Acid Chromophore

light-induced *Trans* to *Cis* isomerization

BioCARS 14-ID, APS

Spencer Anderson, Sudarshan Rajagopal, Harry Ihee, Marius Schmidt, Keith Moffat
University of Chicago

Vukica Srajer, Reinhard Pahl, BioCARS

Ihee et al. PNAS 102, 7145 (2005)
Rajagopal et al., Structure 13, 55 (2005)
Anderson et al., Structure 12,1039 (2004)
Studies of intermediates: PYP E46Q mutant

- 54 Laue data sets collected using 25 crystals, at 30 time delays, from 10ns to 100ms
- Pump: 495-505nm, ~3-5mJ/mm², 7ns laser pulses
- Photo-initiation: 15-20%

Sub-100ps

Rajagopal et al., Structure 13, 55 (2005)
Anderson et al., Structure 12,1039 (2004)
TR crystallography at 14-ID: present

Time-dependent difference electron density map movie, $\Delta \rho(t)$

10ns-100ms

E46Q PYP

TR data collection: ns-sec

SVD/post-SVD analysis: mechanism & structures of intermediates

pR pB

IE1 IE2 IL1 IL2 IL3

$2\mu s$ $20\mu s$ $300\mu s$

300ns $2\mu s$ $200-300\mu s$ 20ms $>100\text{ms}$

Vukica Srajer
Time-resolved crystallography: Present status and future challenges

- Mature phase of the technique: demonstrated ability to detect small structural changes even at relatively low levels of reaction initiation (15-40%)

- Development of essential methods for global time-resolved data analysis, such as SVD, is well under way

Challenges for BioCARS:

- Expanding time resolution to 100ps and aiming at single 100ps X-ray pulse data collection:
 - two collinear undulators replace Undulator A on 14-ID
 - 14-ID optics upgrade
 - upgrade of the BioCARS fast X-ray chopper
 - ps laser system
14-ID Upgrade

Optics Upgrade:

- New Optics Enclosure (SOE) to house a KB mirror pair:
 - changing from original ~1:1 focusing to ~8.3:1(h)/5.2:1(v) demagnification
 - focused beamsize 75 (h) X 35 (v) µm²
 - both mirrors installed – May 2006 & Jan 2007

- New Kohzu monochromator (Si 111)
 - installed May 2006
Implementation of 100ps capability

(in collaboration with Philip Anfinrud, supported by funds from NIDDK / NIH):

- Undulator A (U33) replaced by two new collinear undulators U23 and U27
 - $\geq 10^{10}$ photons/pulse in pink mode, APS 24-bunch mode (4mA/bunch)

- X-ray chopper upgraded (Dec 2006)
 - permits isolation of a single 100ps X-ray pulse in the 24-bunch mode (250ns open time)
 - enhances the beamtime availability for time-resolved research

- New ps laser system (Jan 2007)
 - Ti:Sapphire Spitfire Pro 5: (Spectra Physics) 780nm, 2ps, 5mJ/pulse, 1kHz
 - TOPAS OPA: 75μJ @ 290-400nm
 - >300μJ @ 475-600nm
 - >250μJ @ 600-800nm

Tuning curves for U33 (Undulator A), U27, and U23. The sum of U23 and U27 is shown in black.
Time-resolved crystallography:
Other challenges for BioCARS and user community

- Application of the technique to wider systems of biological interest, photosensitive and beyond ➔ expanding the TR user community

- Reaction initiation: system-specific efforts to determine a suitable reaction initiation method

- Irreversible processes and smaller crystals: need more intense X-ray source (dual undulators and beyond) and faster read-out detectors

- Continuing development and application of essential methods for global time-resolved data analysis, such as SVD and cluster analysis

- Combining experimental results from time-resolved crystallography with computational and theoretical approaches to describe reaction pathways completely, including the transition states
BioCARS: Biosafety Level 2 and 3 Facility

- BioCARS is the only synchrotron-based BSL-2/3 facility in the US
- All stations can be used for BSL-2 and BSL-3 experiments, with all necessary engineering controls and standard operating procedures in place for safe conduct of BSL-2 and BSL-3 experiments.

Facility upgraded and approved for BSL-3 operation by ANL IBC in November 2004
- 3-6 BSL-2 experiments/year at BioCARS
- 4 BSL-3 experiments since the approval
BioCARS User Community and Productivity

- Sept 2002-Sept 2006:
 - 135 research groups
 - 337 unique proposals
 - 772 unique users
 - 1773 user trips

- BioCARS journal articles account for:

- 1st in 2003, 2nd in 2004, 1st in 2005, 3rd in 2006 among all APS sectors by the number of user journal articles

- ~25% of BioCARS journal articles published in Nature and Cell journals, Science & PNAS