Design of Light-regulated Proteins

Andreas Möglich

Department of Biochemistry and Molecular Biology
The University of Chicago
moeglich@uchicago.edu

Time-resolved Crystallography – Need of a Trigger

Need trigger to initiate and synchronize dynamics within crystal:

Properties of a good trigger for time-resolved crystallography:
• fast
• spatially uniform
• reversible

→ use light as a trigger
Light – A Trigger with Exquisite Spatiotemporal Control

Use of light as trigger with high spatiotemporal control:
- pulse duration: femto- to picoseconds
- focal spot size: ≤ micrometers

Use in time-resolved X-ray crystallography ... and in other applications

Phototropism in Arabidopsis thaliana:

(Blue light from the left, 5 hrs real time)

Rajagopal et al. (2005) Structure 13, 55-63. (Hangarter lab, Indiana University)

→ but most systems do not naturally respond to light!

Photolabile Chemically Caged Compounds

- versatile
- small
- reversible?
 → data accumulation on single crystal
- fast?
 → photochemistry should not be rate-limiting
- side reactions?
 → heterogeneity, damage to crystal
- diffusion?
 → restrict photoexcitation to small volume
- in vivo?
 → application in living organisms

→ alternatives, improvements?
→ "naturally caged compounds"?
“Naturally Caged Compounds”: Photoreceptors

- examples: photoactive yellow protein (PYP)
 visual pigment rhodopsin
 plant phototropins

- detection of light by non-protein chromophores

- modular composition: sensor and effector domains

→ Can we design artificial photosensors?
→ Can we make genetically encoded caged compounds? (analogy to GFP)

Light-oxygen-voltage (LOV) Proteins

- flavin-binding blue light sensors that form a subset of the Per-Arnt-Sim (PAS) family

- absorption of blue light promotes formation of thioether bond
 → long-lived signaling state: change of protein activity

- LOV domains naturally coupled to highly civerse effector domains including kinases, transcription factors, phosphodiesterases
LOV Domain Structure of Bacillus subtilis YtvA

- YtvA mediates stress response in *B. subtilis* following blue light absorption.
- flavin mononucleotide (FMN) cofactor
- C-terminal helix Ja extending from core
- upon light absorption formation of covalent bond between cysteine 62 and C4a atom of FMN
- small light-induced quaternary structure changes

Structural Similarity of YtvA-LOV to PAS H Domain of FixL

Two-component system histidine kinase FixL from *Bradyrhizobium japonicum*:

- PAS H domains binds heme and detects oxygen.

Bradyrhizobium japonicum FixL/FixJ two-component system

Regulation of nitrogen metabolism in response to oxygen levels.

Can We Reprogram FixL by Fusion with LOV Domain?

Modular architecture of YtvA and FixL:

Fusion site within Jα helix according to structure-based sequence alignment:
YF1 Kinase Activity Assays

Kinase activity of YF1 was determined in turnover assays

\[
\text{ATP} \rightarrow \text{YF1} \rightarrow \text{FixJ} \rightarrow \text{FixJ-P} \rightarrow \text{H}_2\text{O} \rightarrow \text{P}_i
\]

Reaction aliquots are separated on SDS-PAGE and visualized by \(^{32}\text{P}\)-radiography

- **Dark**: max. turnover: \(56.4 \pm 2.8 \text{ h}^{-1}\)
- **Light**: < 0.04 \text{ h}^{-1}

→ YF1 is a light-inactivated histidine kinase

YF1 Retains Catalytic Efficiency of FixL

Substrate affinities for ATP and FixJ are comparable in YF1 and FixL

<table>
<thead>
<tr>
<th></th>
<th>(K_m^{\text{ATP}}) ((\mu\text{M}))</th>
<th>(K_m^{\text{FixJ}}) ((\mu\text{M}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>YF1</td>
<td>33 ± 2</td>
<td>1.4 ± 0.4</td>
</tr>
<tr>
<td>FixL</td>
<td>206 ± 13</td>
<td>1.6 ± 0.4</td>
</tr>
</tbody>
</table>

Michaelis-Menten \(K_m\)-values
Light Regulation of YF1 is Mediated by Its LOV Domain

YF1:

YF1 C62A:

But What Happens in the Light?

→ rapid decay of phospho-FixJ after illumination

→ YF1 is a light-activated phosphatase
YF1 Linker Variants

Does any fusion between YtvA LOV and FixL histidine kinase work?

→ alter linkage between sensor and effector domain

Kinase Activity of YF1 Linker Variants

Heptad periodicity of kinase activity and regulation by light.

e.g.
- YF1Δ275-277 and YF1 L4
- YF1Δ276-277 and YF1 L5
- YF1 and YF1 L7
- YF1 L1 and YF1 L8
Heptad Periodicity of Kinase Activity

<table>
<thead>
<tr>
<th>YF1 Δ274-277</th>
<th>YF1 Δ275-277</th>
<th>YF1</th>
<th>YF1 Δ1277</th>
<th>YF1 Δ276-277</th>
</tr>
</thead>
<tbody>
<tr>
<td>turn over (s⁻¹)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Δresidues: -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
helix rise (Å): -6 -4.5 -3 -1.5 0 1.5 3 4.5 6 7.5 9 10.5 12
helix angle (°): -60 60 -160 100 -160 -60 40 140 -120 -20 80

Helix rise and angle calculated according to canonical α-helix conformation.

Model for Kinase Regulation by Light

Activity vs. helix angle:

Light-induced rotation of linker helices by about 40-60°:

[Diagram of gear rotation from dark to light]
Design Strategy Applicable to Histidine Kinases...

Analysis of >3000 PAS histidine kinases:

- PAS
- Jα
- DHp

A0X4D6 220 NQPHREnovationEIRREIENIQGQ--------EVAVRKEHEIIEIREIENIQGQ 258
A0ljL6 499 NFTMFYLVAYEGDELTEEAI--------SAVNRSVARTRARTVERP 537
Q2NMA5 481 PASGHRVETTEDTROLLOQ--------RAQANDVARRARTVERP 519
A0XMP1 482 DTIRYETIERTYATIKATQ--------RAQANDVARRARTVERP 571
A1PRM1 314 GTIYIQRENDQTSAPITQGQQ--------HEAVGCIAADAPVTP 159
A6PSM4 257 RFAKRIRHYLDEPVRMGSRSE--------PEAVLGRASITASSMQL 322
A5UXG0 245 GGOGLITLAVORDKNERGERGRES--------NEGVGLOGGATFDMNL 250
Q1ITG2 424 QNMEIDPTQGVRRTSGGQRQ--------KEAVGLOGGATFDMNL 469
A2PG48 210 QPFAALSNQYDKRALKVARHRSQASAKHLNSGQAVLTSABAGQ 262
A6GQY9 148 GLGCCTTQRENDKNERGERGERS--------GEAVGLOGGATFDMNL 220
Q1NMA5 291 DGRALICVFDPFRKZNCQKLNTKDFQPCRSALGGRASITASSMQL 343
P23222 244 GGRYPSTQGRTKDHERCITGQDNEKVLHNLGAGGNGASITASSMQL 296

Conservation

Avg. Hydrophathy

... and Other Proteins

PAS and LOV domains naturally coupled to wide variety of effector domains.

- histidine kinase
- bacteriophytochrome
- adenylate/acylase/lyase/lipase/luteinase
- transcription factor
- anti-sigma antagonist
- potassium channel
- chemotaxis protein

Recently, also regulation of other effector domains by fusion with LOV domains:

→ dihydrofolate reductase (Lee et al. (2008) Science 322, 438-442.)
Summary

- **Genetically Encoded Caging**
 - modularity of natural and synthetic photoreceptors: sensors and effectors
 - light regulation *in situ* by fusion with LOV photosensor domain

- **Design of Light-regulated Histidine Kinases**
 - switch histidine kinase from oxygen control to light control
 - retain catalytic efficiency of parent enzyme
 - activity and light regulation both *in vitro* and *in vivo*

- **Rotary Signaling Mechanism**
 - length of helical domain linker determines activity and regulation by light
 - regulation of activity by light could involve rotation of linker helices

Use in Time-resolved Crystallography

- **Applications**
 - bestow light sensitivity on otherwise light-inert systems
 - reversibly trigger and synchronize reactions within crystal

- **Properties and Requirements**
 - photochemistry suitable for kinetics on microseconds timescale (e.g. enzymes):

 \[
 \text{hv} \quad \rightarrow \quad \begin{array}{c}
 \mu s \\
 \geq s
 \end{array}
 \]

 - how to couple LOV photocycle to change in protein activity?
 - link LOV domain N-terminally to effector domain
 - helical domain linkers
 - in oligomeric proteins: effect quaternary structure changes
Acknowledgements

The University of Chicago
 Dr. Keith Moffat
 Rebecca Ayers
 Dr. Francisco Bezanilla
 Dr. Sean Crosson
 Dr. Phoebe Rice
 Dr. Tobin Sosnick
 Laura Satkamp

ETH Zürich
 Dr. Hane-Martin Fischer
 Dr. Hauke Hennecke

U Minnesota, St. Paul
 Dr. Michael Sadowsky