The Breakdown of Olivine to Perovskite and Magnesiowüstite

Yanbin Wang,* Isabelle Martinez,† François Guyot,‡ Robert C. Liebermann

San Carlos olivine crystals under laboratory conditions of 26 gigapascals and 973 to 1473 kelvin (conditions typical of subducted slabs at a depth of 720 kilometers) for periods of a few minutes to 19 hours transformed to the phase assemblage of perovskite and magnesiowüstite in two stages: (i) the oxygen sublattice transformed into a cubic close-packed lattice, forming a metastable spinelloid, and (ii) at higher temperatures or longer run durations, this spinelloid broke down to perovskite and magnesiowüstite by redistributing silicon and magnesium while maintaining the general oxygen framework. The breakdown was characterized by a blocking temperature of 1000 kelvin, below which olivine remained metastable, and by rapid kinetics once the reaction was activated.

Lithospheric materials are brought into the deep mantle through subduction processes at a rate of tens of thousands of cubic kilometers per year. As the slabs descend, phase transformations occur; the kinetics and mechanisms of these transformations play a central role in controlling the mechanical properties of the slabs and have been suggested to be responsible for deep-focus earthquakes (1). Among the various minerals present in the subducting lithosphere, olivine is believed to be the most abundant. It is also the dominant phase in the upper mantle, and its phase transformation into the β-phase is considered to be the major contributor to the seismic discontinuity at 410 km (2). The seismic discontinuity at 660 km is a manifestation of the disproportion reaction of (Mg,Fe)2SiO4 (3). Studies of the mechanism and kinetics of this reaction are critical to understanding the dynamics of the mantle and the fate of the subducted slabs.

We compressed San Carlos olivine crystals to 26 GPa (as found at depths of about 720 km) and heated them to temperatures between 973 and 1473 K (corresponding to the range of estimated cold and hot slab temperatures) for run durations from 0 to 19 hours (4). The recovered samples were examined with the use of transmission electron microscopy (TEM) (5).

At 973 K, olivine crystals remained metastable even after 19 hours, suggesting that this temperature is not sufficient to activate the transformation process, even under tremendous overpressure (about 14 and 10 GPa above the olivine-β and β-spinel boundaries, respectively). At 1473 K, however, a single crystal of olivine transformed in less than 30 s into a complex phase assemblage containing perovskite, magnesiowüstite, and spinel (Fig. 1). A series of experiments was then conducted at 1273 K. In 10 min, most of the sample transformed into a spinel phase. These spinel lamellae nucleated throughout the olivine crystals and formed layers of a few unit cells to about 0.1 μm (Fig. 2A). Selected-area electron diffraction (SAED) patterns indicate that the spinel is pseudohexagonal close-packed (hcp) oxygen sublattice of olivine is sheared and becomes face-centered-cubic (fcc) close-packed, and local rearrangement of the Mg and Si atoms takes place as the oxygen lattice is transformed (8). Some previous work suggested that the martensitic-like mechanism would operate at high levels of nonhydrostatic stress (7). The dislocation density in the olivine crystals varied greatly but generally was <10^8 cm^-2, suggesting a shear stress of <0.1 GPa (9). The transformation does not appear to be more advanced in areas of high dislocation density. Thus, our experiments confirm that in (Mg,Fe)SiO₄ olivine, the martensitic-type mechanism operates under low deviatoric stresses at 26 GPa (10).

The spinel lamellae are not formed within their stability field because of pressure loss during heating in the experiments. Pressure calibrations performed at 1273 K on the basis of the ilmenite-perovskite transformation in MgSiO₃ indicate that at this temperature, the pressure conditions of the experiments are ~2 GPa inside the stability field of perovskite + magnesiowüstite. More importantly, the amounts of perovskite and magnesiowüstite increased rapidly with time under identical pressure and temperature conditions, at the expense of spinel. Although the spinel phase dominated in the sample recovered from 1273 K after 10 min, perovskite and magnesiowüstite dominated in the 1.5-hour sample. Thus, the spinel crystals are a metastable product that represents an intermediate step in the transformation of olivine into the lower mantle two-phase mixture. The formation of metastable spinel-related phases appears to be a common phenomenon; for example, they have been observed in the β-phase stability field (11).

The spinel phase observed in our samples is highly disordered, and many superlattice reflections were observed (Fig. 2). In addition to strong streaking, which can be explained by stacking disorder in the spinel structure (Fig. 3A), additional reflections that are noninteger multiples of the spinel fundamentals are present (Fig. 3). Thus, the intermediate phase is not the FeMg spinel but a related spinellloid (11).

In longer runs at 1273 K, the perovskite and magnesiowüstite crystals were extremely fine (0.1 μm) and typically formed narrow bands in the spinellloid matrix (Fig. 4A). The SAED patterns indicate the following topotactic relations among the three phases (Fig. 4B and C):

\[[100]_{Sp} \parallel [100]_{Mvs}, \quad [010]_{Sp} \parallel [010]_{Mvs}, \quad [011]_{Sp} \parallel [011]_{Mvs}. \]

Fig. 1. Polarized optical micrograph of a single crystal of olivine recovered from 26 GPa and 1473 K. The sample was heated to the maximum temperature and quenched immediately (total time between 973 and 1473 K, about 5 min), followed by slow pressure release (40 hours). Note the pervasive lamellar features. Light lamellae are dominated by perovskite and magnesiowüstite; darker regions, metastable (Mg,Fe)SiO₄ spinellloid.

*Present address: Consortium for Advanced Radiation Sources, The University of Chicago, Chicago, IL 60637, USA.
†Present address: Laboratoire de Géochimie des Isotopes Stables and Institut de Physique du Globe de Paris, 4 place Jussieu, 75252 Paris Cedex 05, France.
‡Present address: Laboratoire de Minéralogie-Cristallographie and Institut de Physique du Globe de Paris, 4 place Jussieu, 75252 Paris Cedex 05, France.

[100]_{Sp} \parallel [100]_{Mvs}, \quad [010]_{Sp} \parallel [010]_{Mvs}, \quad [011]_{Sp} \parallel [011]_{Mvs}. \]
\[001]_{\text{Sp}} \parallel [001]_{\text{mw}} \parallel [100]_{\text{Pv}}, [010]_{\text{Sp}} \parallel [110]_{\text{Pv}}, [110]_{\text{Sp}} \parallel [110]_{\text{Pv}} \parallel [001]_{\text{mw}} \parallel [001]_{\text{Pv}} \parallel [111]_{\text{Pv}}, \]

where \(\text{Sp}, \text{Mw},\) and \(\text{Pv}\) indicate spineloid, magnesiowustite, and cubic perovskite, respectively. The orthorhombic perovskite structure can be derived from the cubic form by continuous tilting of the \(\text{SiO}_6\) octahedra, with the general topology remaining unchanged. Note also superlattice reflections in the spinel (arrows), indicating a threefold repeat along the (111) axes. At relatively low temperatures (below 1473 K), the hcp oxygen sublattice of olivine first transforms into a fcc arrangement with a spineloid structure by a martensitic-like mechanism (6–8). This spineloid then breaks down to form perovskite and magnesiowustite. An energetically economic way for the breakdown reaction to proceed is to maintain most of the common fcc oxygen framework and to redistribute the Si and Mg atoms within the spinel lattice. As a \(\text{Si}^{4+}\) cation moves into a Mg-O layer by a small displacement of \(1/4\langle 111 \rangle _o\) (arrow in layer A), the four surrounding \(\text{O}^{2-}\) anions in the layer are pulled closer together, thereby forming a part of layer H (the Si-O layer) of the perovskite. This movement causes the Mg-O bond length to increase within the layer, thus decreasing the bond strength and making it easier for the \(\text{Mg}^{2+}\) cations (\(\text{M}_1\) and \(\text{M}_2\) in layer A) to join the adjacent Mg-O layer (positions \(\text{M}_1\) and \(\text{M}_2\) in layer B) by a displacement of \(1/4\langle 111 \rangle _o\). This shift doubles the Mg occupancy in layer B, making it an Mg-O layer like those in MgO and perovskite. Thus, the metastable transformation in the oxygen sublattice provides a low-activation energy path for the breakdown to proceed because little diffusion of the oxygen atoms is required.

If all the rearrangements occurred coherently while maintaining the entire topology of the oxygen framework, the result would be a structure of Mg,SiO\(_4\) known as the K\(_2\)NiF\(_4\) structure, which can be viewed as being composed of alternating layers of rocksalt and perovskite (13). We do not have observational evidence for the existence of K\(_2\)NiF\(_4\)-structured Mg,SiO\(_4\), although it could be a transient and non-quenchable phase. Our model does not require formation of this phase; rather, small nuclei of perovskite and magnesiowustite may be formed based on the fcc oxygen sublattice of the spineloid, and then growth processes may take over. The fine-grained microstructure (Fig. 4A) supports this mechanism.

This model explains the topotactic relations among the three phases. The observed diffused satellite diffraction spots in the spineloid may be an indication of structural disorder resulting from incomplete cation reordering after a shear mechanism affecting the oxygen sublattice. In turn, this disordering could be an additional driving force for the breakdown reaction. Experimentally, the kinetics of this reaction are...
magnesiowüstite (mw).

SAED pattern showing topotactic relations between spinelloid (sp) and magnesiowüstite (mw). Spinelloid spots are labeled by arrowheads pointing to the central spot; magnesiowüstite spots are labeled with arrowheads pointing outward. Notice the absence of (220)-type reflections in the spinelloid and the appearance of the (4/3 8/3 4/3) type spots (thin partly amorphous).

Fig. 5. Plane views of stacked layers A through H of spinel, MgO, and cubic perovskite. Large open circles represent oxygen; small open circles, Mg; and solid circles, Si atoms. All unit cell dimensions in the layers are outlined by solid lines. The third dimension is built by stacking layers on top of one another. Note that the perovskite unit cell is rotated by 45° with respect to spinel and MgO, in the same fcc oxygen framework.

cable to the breakdown reaction to perovskite and magnesiowüstite. The fact that olivine first transforms into a spinel-related structure suggests that the temperature dependence in the breakdown kinetics is related to the blocking temperature for the olivine-spinel transformation. An additional constraint on the thermal structure of subducting slabs may thus be obtained. Global seismicity ceases at a depth of 690 km; if the phase transformations of olivine are responsible for the deep-focus earthquakes, then slab temperatures at these depths must be above the blocking temperature.

REFERENCES AND NOTES

2. See, for example, T. Katsura and E. Ito, J. Geophys. Res. 94, 15663 (1989).

4. The experiments were conducted in a 2000-ton uniaxial split-sphere apparatus (USSSA-2000) at the Stony Brook High Pressure Laboratory. Sample assembly and experimental techniques were described previously (16). In the current experiments, a mixture of coarse crystals (from 0.2 to 1.0 mm in linear dimensions) and fine powder (about 5 μm) of San Carlos olivine was used as the starting material. Microprobe analyses on the starting olivine gave an average composition of (Mg0.9Fe0.1)2SiO4.

5. Samples were polished into standard 30-μm-thick sections and then thinned by Ar ion beam. Because of the unstable nature of the silicate perovskite, a low-energy Ar beam was used (2.5 keV and 0.25 mA), and about 100 to 150 hours were required to prepare each thin foil for TEM observations. Details of the preparation techniques are described in (16).

10. Similar observations were made by L. Kerschhofer, T. G. Sharp, and D. C. Rubie [Science 274, 79 (1996)] in (Mg,Fe)2SiO4 olivine up to 20 GPa and by P. C. Burnley [Am. Mineral. 80, 1293 (1995)] in the Mg3Ge2O6 system.

High-pressure in situ x-ray diffraction and transmission electron microscopy on quenched samples show that natural garnet transforms to orthorhombic perovskite (and minor coexisting phases) containing increasing amounts of aluminum with increasing pressure. This suggests that the perovskite is the dominant host mineral for aluminum in Earth’s lower mantle. Orthorhombic perovskite is quenched from ~35 gigapascals but, because of the increased aluminum content, transforms to the LiNbO3 structure upon quenching from ~60 gigapascals.

In 1974, Liu (1) reported the transformation of a natural garnet, the host mineral of Al in Earth’s upper mantle, into the orthorhombic perovskite structure at 30 GPa. Since then, the transformation of garnets of various compositions has been investigated to clarify the host mineral of Al in the lower mantle. The results, however, are complicated and the host remains uncertain, whereas the hosts of the other main cations (Mg, Si, and Fe) in the mantle—(Mg,Fe)SiO3 orthorhombic perovskite and (Mg,Fe)O ilmenite solid solution—are well identified. Weng et al. (2) carried out experiments on pyrope (Mg,Al, Si, O3)—grossular (Ca, Al, Si,O3) garnet at 40 GPa and suggested that it transforms to an assemblage of orthorhombic perovskite and unquenchable Ca-rich perovskite. O’Neill and Jeanloz (3) reported the coexistence of garnet with orthorhombic perovskite up to 50 GPa in a pyrope-almandine (Fe3Al2Si3O12) system. Irifune et al. (4) found the decomposition of pyrope into a sub-aluminous (Al-deficient relative to garnet) orthorhombic perovskite and a coronulite-ilmenite solid solution at pressures greater than 26.5 GPa. They also found an increase of Al in the perovskite phase with increasing pressure, and predicted the formation of an aluminous perovskite with pyrope composition above 30 to 40 GPa. Recently, Kesson et al. (5) reported that rhombohedral perovskite, rather than orthorhombic perovskite, is the stable phase of pyrope-almandine garnet at 55 to 70 GPa. On the other hand, Ahmed-Zaid and Madon (6) suggested, from their experiments at 40 to 50 GPa, that the main host mineral of Al varies depending on chemical composition, pressure, and temperature. The candidates they proposed are (CaxMgyFez)Al2Si2O8 with the hollandite structure, Al2SiO5 with the V3O5 structure, and (CaMg)Al2Si2O8 with an unknown structure.

To clarify the host mineral of Al under lower mantle conditions, we carried out high-pressure in situ x-ray diffraction experiments on natural garnet with the use of a diamond anvil cell and synchrotron radiation (7). Garnet from the Udachnaya kimberlite pipe in the Sakha Republic (8) with the composition Py49Alm29Gro21Sp1 [Py, pyrope; Alm, almandine; Gro, grossular; Sp, spessartine (Mn3Al2Si3O12)] was ground to a powder and used as the starting material. The samples were heated by a yttrium-aluminum-garnet (YAG) laser at two different pressures (9). The recovered samples were examined by transmission electron microscopy (TEM) (10). The sample was compressed to 67.5 GPa and heated by the YAG laser. Pressure decreased to 52.8 GPa, measured after heating. The x-ray diffraction profile (Fig. 1A) obtained after heating shows that most of the intense lines can be indexed as orthorhombic perovskite, with intensities similar to those of MgSiO3 perovskite (11). Unit cell parameters of this phase are a = 4.539(4) Å, b = 4.761(5) Å, c = 6.622(5) Å, and V = 143.1(2) Å3. The other lines can be assigned to Ca-rich perovskite, stishovite, and garnet. A trace amount of stishovite is often observed as a metastable phase during transformation, but it is not clear whether the stishovite observed in this sample is the metastable phase (12). The garnet may be a residual of the starting material that has not been heated to a high enough temperature (9, 13). The orthorhombic perovskite phase was observed on decompression down to 9.6 GPa, although splitting of the characteristic triplet 020+112+200 became unclear with decreasing pressure (Fig. 1, B and C). Both a decrease of the orthorhombic distortion from cubic symmetry (14) and an increase of the pressure gradient across the sample during decompression can explain this phenomenon. Diffraction from the orthorhombic perovskite is not observed in the profile obtained after complete decompression (Fig. 1D). The main peaks can be indexed on the basis of rhombohedral symmetry

Transformation in Garnet from Orthorhombic Perovskite to LiNbO3 Phase on Release of Pressure

Nobumasa Funamori, Takehiko Yagi, Nobuyoshi Miyajima, Kiyoshi Fujino