Considering that the present experiment represents a sensitivity to single nuclear spin detection is necessary, but this will require a low signal-to-noise ratio. If the measurement time can be decreased as the inverse fourth power of the gradient in the limit of low signal-to-noise ratio.

Formation of zirconium metallic glass
Jianzhong Zhang & Yusheng Zhao

LANCSE Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

Bulk metallic glasses are commonly produced by the rapid cooling of liquid alloys. They have emerged over the past decade as a novel class of materials, with attractive properties and technological promise. The bulk metallic glasses so far produced contain three or more component elements. These complex compositions are necessary to frustrate the crystallization of the liquid metal on cooling, but can also lead to phase separation, which is detrimental to the thermal and mechanical properties of metallic glasses. Here we report, using X-ray diffraction measurements, the formation of a bulk metallic glass from elemental zirconium at high static pressures and low temperatures (relative to its melting temperature at atmospheric pressure). Amorphous metallic glasses can be recovered at ambient conditions and demonstrate a superior thermal stability compared to amorphous alloys, which could lead to new high-temperature amorphous metals.

In multi-component systems, glass-forming ability (GFA) is viewed as the resistance to precipitation of crystalline phases from supercooled liquid metals and alloys with high GFA all have three common features: (1) they consist of at least three components; (2) there is significant mismatch of the atomic size of the constituent elements; and (3) there are negative heats of mixing among the major alloying elements. Addition of elements that are chemically and topologically different from the other species not only creates an energy barrier for nuclei to form but also effectively increases melt viscosity or fragility, which results in a reduced rate of both nucleation and growth and an increase in GFA. The production of bulk glassy materials in pure metals, however, remains a long-standing scientific curiosity and technological interest. The difficulties arise from the facts that the equilibrium melt viscosity of pure metals is three orders of magnitude smaller than that of amorphous alloys and that current technology has yet to reach a cooling rate in excess of the 10^9°C s^-1 that is needed to make pure metals amorphous.

We studied zirconium metal at pressures and temperatures up to 17 GPa and 1,000°C, using energy-dispersive synchrotron X-ray diffraction and time-of-flight neutron scattering. In X-ray diffraction experiments, we used both DIA-type and T-cup large-volume high-pressure apparatus installed at Brookhaven and Argonne National Laboratories. Neutron scattering experiments were performed using a high-pressure/high-temperature (high P–T) cell assembly in a TAP-98 toroidal-anvil press at Los Alamos Neutron Scattering Center. The starting sample of zirconium has a close-packed hexagonal structure (c-phase) and is of extremely high purity, with 35 p.p.m. Hf, less than 25 p.p.m. of C, N and Al.

Supplementary Information accompanies the paper on www.nature.com/nature.

Acknowledgements We thank J. Sidel, A. Hero, M. Teng, G. Berman, I. Martin, C. S. Yannoni and T. Kenny for discussions, and D. Pearson, Y. Hishinuma, M. Sherwood and C. Retter for technical assistance. This work was supported by the DARPA Three-Dimensional Atomic-Scale Imaging program administered through the US Army Research Office.

Competing interests statement The authors declare that they have no competing financial interests.

Correspondence and requests for materials should be addressed to D.R. (rugar@lanl.gov).
and less than 50 p.p.m. of O, V and Fe. The zirconium samples were placed in boron nitride and/or NaCl capsules, with NaCl used as an internal pressure standard.8

Both X-ray and neutron diffraction experiments reveal that the zirconium metal is in crystalline forms at pressures and temperatures up to 4.3 GPa and 900°C. The formation of amorphous zirconium was first observed when ω-phase (a hexagonal structure but not close-packed) was heated to 650°C at 5.3 GPa (Figs 1 and 2). The lower bound for glass formation is therefore bracketed between pressures of 4.3 and 5.3 GPa. Upon cooling, we observed crystallization of ω-phase from amorphous zirconium at 4.8 GPa and 450°C, indicating that the crystalline–glass transformation is reversible at this P–T condition (Fig. 2). When zirconium metal was heated at higher pressures of 6.4 GPa and 8.6 GPa in two different experiments, glass formation was observed at 700°C and 625°C, respectively, and the glass was stable on further heating to 1,000°C (Figs 1 and 3). In both experiments, the transformation sequence is from ω-phase to β-phase (a body-centred cubic, high-temperature phase), and from β-phase to amorphous phase. The temperature interval between first appearance of β and first appearance of amorphous phase is less than 25°C. Upon slow cooling, we did not observe crystallization of either ω- or β-phase even at room temperature, indicating an irreversible process for glass formation in zirconium metal. These findings demonstrate that pressure plays a critical role in both formation and reversibility of amorphous zirconium. From another perspective, we can conclude that the irreversible formation of amorphous zirconium seems to occur only when glass is formed from the β-phase.

To further explore effect of pressure on the GFA, we performed an additional experiment at 14–17 GPa. We observed the transformation from ω-phase to β-phase between 500 and 600°C; upon further heating, however, zirconium metal is only partially transformed to an amorphous phase at 750°C and 14.5 GPa, and the diffraction pattern is dominated by the β-phase. Compared with our experimental results at lower pressures (Fig. 1), these observations tend to suggest that zirconium metal has a diminishing GFA with increasing pressure between 9 and 15 GPa. The fully amorphous zirconium can therefore be formed in a limited pressure–temperature space. The glass-forming region needs to be more accurately determined to constrain the phase diagram for zirconium metal, as well as to provide a better understanding of glass-forming kinetics.

The glass formed at 8.6 GPa and temperatures above 625°C (Fig. 3) was annealed up to 900°C at pressures as low as 2.8 GPa to investigate the thermal stability of amorphous zirconium outside its formation P–T conditions (Fig. 4). At these experimental conditions, we did not observe the precipitation of any crystalline phase from amorphous zirconium. The glass formed at high pressure and temperature appears to have a superior thermal stability when compared to amorphous alloys formed from the conventional melting–cooling process, which typically start crystallization when annealed at temperatures between 450 and 500°C (refs 3, 9). Whether amorphous zirconium shows a similar thermal behaviour at atmospheric pressure remains to be explored. As a final note on the stability, both energy and angle dispersive diffraction on the recovered zirconium sample shows patterns that are characteristic of an amorphous phase, but they do not reveal any diffraction lines of crystalline zirconium (Figs 2–4 and Supplementary Fig. 1). Both recovered and starting samples do not show any Raman shifts except for surface oxidation, indicating that the bulk zirconium sample remains in an elemental form at our experimental conditions.

Figure 1 Glass-forming conditions and stability of amorphous zirconium. Formation of glass was observed in two independent experiments (runs 1 and 2). Filled circles refer to pressures and temperatures at which crystalline zirconium metal fully transformed into an amorphous phase on heating. The filled hexagon symbol corresponds to the conditions where the reversed transformation from glass to ω-phase was observed upon cooling. Arrows indicate the selected experimental P–T paths along which no precipitation of any crystalline phase was observed after the formation of amorphous zirconium, with open circles denoting a portion of data collected along the paths (see Fig. 4b for more detail for run 1). Experimental constraints on the phase diagram of zirconium metal (dashed lines) will be published elsewhere. A small amount of elemental addition has previously been demonstrated to significantly affect the glass-forming ability and physical properties in multi-component alloys. Such effects in zirconium metal need to be explored as this study was carried out on zirconium specimens of ultra-high purity.

Figure 2 Selected synchrotron X-ray diffraction patterns showing a reversible transformation between ω-phase and amorphous phases of zirconium metal. Formation of a glass is identified by the disappearance of all diffraction peaks of ω-phase and by a significant reduction in the diffraction intensity (pattern b). Intensities have been normalized to the data acquisition time, and all three figures are plotted within an identical intensity range. The weak diffraction peaks observed in the amorphous phase are also present in all patterns collected in this experiment, and are from diffraction of materials surrounding the zirconium metal (see patterns a and c).
conditions. The microstructure and/or atomic scale structure of the recovered sample, however, need to be characterized by other experimental techniques, such as high-resolution transmission electron microscopy and neutron pair distribution function.

Phase transformations in zirconium metal have previously been studied at pressures and temperatures up to 6 GPa and 840 °C (ref. 17), and at 31–36 GPa up to 175 °C (refs 18, 19). The experimental conditions we found for the irreversible glass formation have therefore not been explored by any previous work. In addition, no theoretical calculations have predicted the instability of α- and β-phases of zirconium metal relative to a solid amorphous phase20,21. At atmospheric pressure, zirconium metal melts at 1,855 °C; the melting curve at high pressures, however, is not known. But it is extremely unlikely that the observed glass formation can be attributed to the melting of zirconium metal at the experimental pressures, because this would require an unusually large negative dT/dP slope of 〜240 °C·GPa⁻¹. The melting explanation is made more unlikely by the fact that the observed glass-forming temperature between 5 and 9 GPa only has a slightly negative dependence on pressure (Fig. 1). We therefore conclude that glass formation in zirconium metal by-passes the conventionally required liquid state, which represents a novel approach to making metallic glass. This experimental study presents (to our knowledge) the first finding that bulk metallic glass can be produced from a pure elemental metal.

Formation of an amorphous phase within a solid state by application of pressure has been found to be a phenomenon of widespread occurrence among condensed matter systems, such as silicates22, ice23 and alloys24. There are, however, major differences between these observations and the present findings. Pressure-induced amorphization is a process in which amorphous phase is formed because transformation from a crystalline solid to its high-pressure phase is kinetically hindered at ambient or low temperature25. In zirconium metal, formation of a glass occurs after α-phase transforms to its high-pressure and/or high-temperature phases. For pressure-induced amorphization, the glass would crystallize into its equilibrium, high-pressure phase when subjected to elevated temperatures. In zirconium glass, no precipitation of any crystalline phases was found at temperatures up to 1,000 °C. In fact, it is not known that there exists another high-temperature polymorph of zirconium metal except the β-phase. This leads to an unusual situation where amorphous zirconium would eventually ‘melt’ at somewhat higher temperatures, which could infer an extremely high thermal stability. Finally, no previous work has demonstrated that pure metals would undergo a pressure-induced amorphization.

Both measurements and molecular dynamics have revealed strong or anomalous softening of phonons along high symmetry directions in crystals of α-, ω- and β-phases of zirconium metal26–28. In particular, phonon anomalies have been observed in the dis-

Figure 3 Selected diffraction patterns showing the α→β phase transition and formation of glass from the β-phase of zirconium metal at 8.6 GPa. Pattern d is a blow-up of pattern c. It is well known that β-phase is formed by the splitting of alternating (001) planes along the c axis of an α metal into two (111) planes of the β-phase. Therefore, diffraction pattern of the α-phase contains all the diffraction lines of the β-phase and some characteristic lines resulting from its superlattice structure (patterns b and c). In this study and previous ones18–20, the transition from α-phase to β-phase is identified by the disappearance of the superlattice diffraction lines, (11), (002) and (112), of the α-phase. Weak diffraction lines observed in all patterns are fluorescence peaks of tungsten, which was used to define calibration of the multi-element detector, and lead, which was used as a shielding material to avoid air scattering. For patterns a, b and c, intensities have been normalized to the data acquisition time, and all three figures are plotted within an identical intensity range.

Figure 4 Experimental results demonstrating thermal stability/metastability of zirconium metallic glass. a, Diffraction pattern of glassy zirconium collected outside its forming conditions (Fig. 1). The P–T path for the experimental run 1. Open squares correspond to the conditions at which diffraction data were taken for Fig. 3d (point A) and Fig. 4a (point B). Numbers in parentheses and arrows indicate the sequential development of data collection in this experiment. After the first formation of amorphous zirconium at point A (8.57 GPa, 625 °C), the patterns collected in subsequent heating–cooling cycles at lower pressures and at the end of experiment are essentially identical to the ones shown in Fig. 3d and Fig. 4a.
neutron diffraction experiments did not reach the sample size, along with the current design of high-pressure cell, limits the experimental conditions needed for the glassy zirconium to be further studied by neutron diffraction.

In our high P–T neutron diffraction experiments, the cross-section of the incident neutron beam has a diameter of 5 mm, which is defined by cadmium and B4C collimators. The time-of-flight neutron diffraction patterns were collected by eight detector banks that are available for TAP-98, at a fixed Bragg angle of $2\theta = 90^\circ$. The experiments were performed on the polycrystalline zirconium specimens of ~ 100 mm3 sample volume. This sample size, along with the current design of high-pressure cell, limits the experimental pressure to 5 GPa at high temperatures. So, unlike our X-ray diffraction experiments, our neutron diffraction experiments did not reach the P–T conditions needed for the glassy zirconium to form. These results are mainly used to constrain the α–β phase boundary, and will be published elsewhere.

Received 5 December 2003; accepted 4 June 2004; doi:10.1038/nature02715.

Supplementary Information accompanies the paper on www.nature.com/nature.

Acknowledgements This work was performed under the auspices of the US Department of Energy with the University of California. The synchrotron X-ray-diffraction experiments were conducted at X17B2 beamline of NSLS and BM-13 beamline of APS, operated by COMPS and GESCAR, respectively.

Competing interests statement The authors declare that they have no competing financial interests.

Correspondence and requests for materials should be addressed to J.Z. (jzhang@lanl.gov).

Hydrological response to a seafloor spreading episode on the Juan de Fuca ridge

Earl Davis1, Keir Becker1, Robert Dzak1, John Cassidy1, KeLin Wang1 & Marvin Lilley1

1Pacific Geoscience Centre, Geological Survey of Canada, Sidney, British Columbia V8L 4B2, Canada
2Rosewell School of Marine and Atmospheric Science, University of Miami, Miami, Florida 33149, USA
3Oregon State University/NOAA, Hatfield Marine Science Centre, Newport, Oregon 97365, USA
4School of Oceanography, University of Washington, Seattle, Washington, 98195, USA

Seafloor hydrothermal systems are known to respond to seismic and magnetic activity along mid-ocean ridges, often resulting in locally positive changes in hydrothermal discharge rate, temperature and microbial activity, and shifts in composition occurring at the time of earthquake swarms and axial crustal dike injections4, 5, 11. Corresponding regional effects have also been observed. Here we present observations of hydrological response to seafloor spreading activity, which resulted in a negative formation-fluid pressure transient during and after an earthquake swarm in the sediment-sealed igneous crust of the Juan de Fuca ridge, Washington.